Areas subject to high growth or serving a population of at least 50,000 must comply with the following provisions (for counties this threshold population applies to the population within the permit area).

A. RECEIVING WATER LIMITATIONS

- 1. Discharges shall not cause or contribute to an exceedance of water quality standards contained in a Statewide Water Quality Control Plan, the California Toxics Rule (CTR), or in the applicable RWQCB Basin Plan.
- 2. The permittees shall comply with Receiving Water Limitations A.1 through timely implementation of control measures and other actions to reduce pollutants in the discharges in accordance with the SWMP and other requirements of this permit including any modifications. The SWMP shall be designed to achieve compliance with Receiving Water Limitations A.1. If exceedance(s) of water quality objectives or water quality standards (collectively, WQS) persist notwithstanding implementation of the SWMP and other requirements of this permit, the permittees shall assure compliance with Receiving Water Limitations A.1 by complying with the following procedure:
 - a. Upon a determination by either the permittees or the RWQCB that discharges are causing or contributing to an exceedance of an applicable WQS, the permittees shall promptly notify and thereafter submit a report to the RWQCB that describes BMPs that are currently being implemented and additional BMPs that will be implemented to prevent or reduce any pollutants that are causing or contributing to the exceedance of WQSs. The report may be incorporated in the annual update to the SWMP unless the RWQCB directs an earlier submittal. The report shall include an implementation schedule. The RWQCB may require modifications to the report.
 - b. Submit any modifications to the report required by the RWQCB within 30 days of notification.
 - c. Within 30 days following approval of the report described above by the RWQCB, the permittees shall revise the SWMP and monitoring program to incorporate the approved modified BMPs that have been and will be implemented, implementation schedule, and any additional monitoring required.
 - d. Implement the revised SWMP and monitoring program in accordance with the approved schedule.

So long as the permittees have complied with the procedures set forth above and are implementing the revised SWMP, the permittees do not have to repeat the same procedure for continuing or recurring exceedances of the same receiving water limitations unless directed by the RWQCB to develop additional BMPs.

B. DESIGN STANDARDS

Regulated Small MS4s subject to this requirement must adopt an ordinance or other document to ensure implementation of the Design Standards included herein or a functionally equivalent program that is acceptable to the appropriate RWQCB. The ordinance or other document must be adopted and effective prior to the expiration of this General Permit or, for Small MS4s designated subsequent to the Permit adoption, within five years of designation as a regulated Small MS4.

All discretionary development and redevelopment projects that fall into one of the following categories are subject to these Design Standards. These categories are:

- Single-Family Hillside Residences
- 100,000 Square Foot Commercial Developments
- Automotive Repair Shops
- Retail Gasoline Outlets
- Restaurants
- Home Subdivisions with 10 or more housing units
- Parking lots 5,000 square feet or more or with 25 or more parking spaces and potentially exposed to storm water runoff

1. Conflicts With Local Practices

Where provisions of the Design Standards conflict with established local codes or other regulatory mechanism, (e.g., specific language of signage used on storm drain stenciling), the Permittee may continue the local practice and modify the Design Standards to be consistent with the code or other regulatory mechanism, except that to the extent that the standards in the Design Standards are more stringent than those under local codes or other regulatory mechanism, such more stringent standards shall apply.

2. Design Standards Applicable to All Categories

a. Peak Storm Water Runoff Discharge Rates
Post-development peak storm water runoff discharge rates shall not exceed the
estimated pre-development rate for developments where the increased peak storm
water discharge rate will result in increased potential for downstream erosion.

b. Conserve Natural Areas

If applicable, the following items are required and must be implemented in the site layout during the subdivision design and approval process, consistent with applicable General Plan and Local Area Plan policies:

- 1) Concentrate or cluster Development on portions of a site while leaving the remaining land in a natural undisturbed condition.
- 2) Limit clearing and grading of native vegetation at a site to the minimum amount needed to build lots, allow access, and provide fire protection.
- 3) Maximize trees and other vegetation at each site by planting additional vegetation, clustering tree areas, and promoting the use of native and/or drought tolerant plants.

- 4) Promote natural vegetation by using parking lot islands and other landscaped areas.
- 5) Preserve riparian areas and wetlands.

c. Minimize Storm Water Pollutants of Concern

Storm water runoff from a site has the potential to contribute oil and grease, suspended solids, metals, gasoline, pesticides, and pathogens to the storm water conveyance system. The development must be designed so as to minimize, to the maximum extent practicable, the introduction of pollutants of concern that may result in significant impacts, generated from site runoff of directly connected impervious areas (DCIA), to the storm water conveyance system as approved by the building official. Pollutants of concern consist of any pollutants that exhibit one or more of the following characteristics: current loadings or historic deposits of the pollutant are impacting the beneficial uses of a receiving water, elevated levels of the pollutant are found in sediments of a receiving water and/or have the potential to bioaccumulate in organisms therein, or the detectable inputs of the pollutant are at concentrations or loads considered potentially toxic to humans and/or flora and fauna.

In meeting this specific requirement, "minimization of the pollutants of concern" will require the incorporation of a BMP or combination of BMPs best suited to maximize the reduction of pollutant loadings in that runoff to the Maximum Extent Practicable. Those BMPs best suited for that purpose are those listed in the *California Storm Water Best Management Practices Handbooks*; *Caltrans Storm Water Quality Handbook: Planning and Design Staff Guide*; *Manual for Storm Water Management in Washington State*; *The Maryland Stormwater Design Manual*; *Florida Development Manual: A Guide to Sound Land and Water Management*; Denver *Urban Storm Drainage Criteria Manual, Volume 3 – Best Management Practices* and *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*, USEPA Report No. EPA-840-B-92-002, as "likely to have significant impact" beneficial to water quality for targeted pollutants that are of concern at the site in question. However, it is possible that a combination of BMPs not so designated, may in a particular circumstance, be better suited to maximize the reduction of the pollutants.

d. Protect Slopes and Channels

Project plans must include BMPs consistent with local codes, ordinances, or other regulatory mechanism and the Design Standards to decrease the potential of slopes and/or channels from eroding and impacting storm water runoff:

- 1) Convey runoff safely from the tops of slopes and stabilize disturbed slopes.
- 2) Utilize natural drainage systems to the maximum extent practicable.
- 3) Stabilize permanent channel crossings.
- 4) Vegetate slopes with native or drought tolerant vegetation, as appropriate.
- 5) Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels in accordance with applicable specifications to minimize erosion, with the approval of all agencies

with jurisdiction, e.g., the U.S. Army Corps of Engineers and the California Department of Fish and Game.

- e. Provide Storm Drain System Stenciling and Signage
 Storm drain stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets. The stencil contains a brief statement that prohibits the dumping of improper materials into the storm water conveyance system. Graphical icons, either illustrating anti-dumping symbols or images of receiving water fauna, are effective supplements to the anti-dumping message. All storm drain inlets and catch basins within the project area must be stenciled with prohibitive language (such as: "NO DUMPING DRAINS TO OCEAN") and/or graphical icons to discourage illegal dumping. Signs and prohibitive language and/or graphical icons, which prohibit illegal dumping, must be posted at public access points along channels and creeks within the project area. Legibility of stencils and signs must be maintained.
- f. Properly Design Outdoor Material Storage Areas
 Outdoor material storage areas refer to storage areas or storage facilities solely for the
 storage of materials. Improper storage of materials outdoors may provide an
 opportunity for toxic compounds, oil and grease, heavy metals, nutrients, suspended
 solids, and other pollutants to enter the storm water conveyance system. Where
 proposed project plans include outdoor areas for storage of materials that may
 contribute pollutants to the storm water conveyance system, the following Structural
 or Treatment BMPs are required:
 - 1) Materials with the potential to contaminate storm water must be: (1) placed in an enclosure such as, but not limited to, a cabinet, shed, or similar structure that prevents contact with runoff or spillage to the storm water conveyance system; or (2) protected by secondary containment structures such as berms, dikes, or curbs.
 - 2) The storage area must be paved and sufficiently impervious to contain leaks and spills.
 - 3) The storage area must have a roof or awning to minimize collection of storm water within the secondary containment area.
- g. Properly Design Trash Storage Areas

A trash storage area refers to an area where a trash receptacle or receptacles (dumpsters) are located for use as a repository for solid wastes. Loose trash and debris can be easily transported by the forces of water or wind into nearby storm drain inlets, channels, and/or creeks. All trash container areas must meet the following Structural or Treatment Control BMP requirements (individual single family residences are exempt from these requirements):

- 1) Trash container areas must have drainage from adjoining roofs and pavement diverted around the area(s).
- 2) Trash container areas must be screened or walled to prevent off-site transport of trash.
- h. Provide Proof of Ongoing BMP Maintenance

Improper maintenance is one of the most common reasons why water quality controls will not function as designed or which may cause the system to fail entirely. It is important to consider who will be responsible for maintenance of a permanent BMP, and what equipment is required to perform the maintenance properly. As part of project review, if a project applicant has included or is required to include, Structural or Treatment Control BMPs in project plans, the Permittee shall require that the applicant provide verification of maintenance provisions through such means as may be appropriate, including, but not limited to legal agreements, covenants, CEQA mitigation requirements and/or Conditional Use Permits.

For all properties, the verification will include the developer's signed statement, as part of the project application, accepting responsibility for all structural and treatment control BMP maintenance until the time the property is transferred and, where applicable, a signed agreement from the public entity assuming responsibility for Structural or Treatment Control BMP maintenance. The transfer of property to a private or public owner must have conditions requiring the recipient to assume responsibility for maintenance of any Structural or Treatment Control BMP to be included in the sales or lease agreement for that property, and will be the owner's responsibility. The condition of transfer shall include a provision that the property owners conduct maintenance inspection of all Structural or Treatment Control BMPs at least once a year and retain proof of inspection. For residential properties where the Structural or Treatment Control BMPs are located within a common area which will be maintained by a homeowner's association, language regarding the responsibility for maintenance must be included in the project's conditions, covenants and restrictions (CC&Rs). Printed educational materials will be required to accompany the first deed transfer to highlight the existence of the requirement and to provide information on what storm water management facilities are present, signs that maintenance is needed, how the necessary maintenance can be performed, and assistance that the Permittee can provide. The transfer of this information shall also be required with any subsequent sale of the property.

If Structural or Treatment Control BMPs are located within a public area proposed for transfer, they will be the responsibility of the developer until they are accepted for transfer by the County or other appropriate public agency. Structural or Treatment Control BMPs proposed for transfer must meet design standards adopted by the public entity for the BMP installed and should be approved by the County or other appropriate public agency prior to its installation.

- Design Standards for Structural or Treatment Control BMPs
 The Permittees shall require that post-construction treatment control BMPs
 incorporate, at a minimum, either a volumetric or flow based treatment control design
 standard, or both, as identified below to mitigate (infiltrate, filter or treat) storm water
 runoff:
 - 1) Volumetric Treatment Control BMP

- a) The 85th percentile 24-hour runoff event determined as the maximized capture storm water volume for the area, from the formula recommended in Urban Runoff Quality Management, WEF Manual of Practice No. 23/ASCE Manual of Practice No. 87, (1998); or
- b) The volume of annual runoff based on unit basin storage water quality volume, to achieve 80 percent or more volume treatment by the method recommended in California Stormwater Best Management Practices Handbook Industrial/ Commercial, (2003); or
- c) The volume of runoff produced from a historical-record based reference 24-hour rainfall criterion for "treatment" that achieves approximately the same reduction in pollutant loads achieved by the 85th percentile 24-hour runoff event.

2) Flow Based Treatment Control BMP

- a) The flow of runoff produced from a rain event equal to at least two times the 85th percentile hourly rainfall intensity for the area; or
- b) The flow of runoff produced from a rain event that will result in treatment of the same portion of runoff as treated using volumetric standards above.

Limited Exclusion

Restaurants and Retail Gasoline Outlets, where the land area for development or redevelopment is less than 5,000 square feet, are excluded from the numerical Structural or Treatment Control BMP design standard requirement only.

3. Provisions Applicable to Individual Priority Project Categories

- a. 100,000 Square Foot Commercial Developments
 - 1) Properly Design Loading/Unloading Dock Areas
 Loading/unloading dock areas have the potential for material spills to be quickly
 transported to the storm water conveyance system. To minimize this potential, the
 following design criteria are required:
 - a) Cover loading dock areas or design drainage to minimize run-on and runoff of storm water.
 - b) Direct connections to storm drains from depressed loading docks (truck wells) are prohibited.
 - 2) Properly Design Repair/Maintenance Bays
 Oil and grease, solvents, car battery acid, coolant and gasoline from the
 repair/maintenance bays can negatively impact storm water if allowed to come
 into contact with storm water runoff. Therefore, design plans for repair bays must
 include the following:

- a) Repair/maintenance bays must be indoors or designed in such a way that doesn't allow storm water runon or contact with storm water runoff.
- b) Design a repair/maintenance bay drainage system to capture all washwater, leaks and spills. Connect drains to a sump for collection and disposal. Direct connection of the repair/maintenance bays to the storm drain system is prohibited. If required by local jurisdiction, obtain an Industrial Waste Discharge Permit.
- 3) Properly Design Vehicle/Equipment Wash Areas
 The activity of vehicle/equipment washing/steam cleaning has the potential to
 contribute metals, oil and grease, solvents, phosphates, and suspended solids to
 the storm water conveyance system. Include in the project plans an area for
 washing/steam cleaning of vehicles and equipment. The area in the site design
 - a) Self-contained and/ or covered, equipped with a clarifier, or other pretreatment facility, and
 - b) Properly connected to a sanitary sewer or other appropriately permitted disposal facility.

b. Restaurants

must be:

- 1) Properly Design Equipment/Accessory Wash Areas
 The activity of outdoor equipment/accessory washing/steam cleaning has the
 potential to contribute metals, oil and grease, solvents, phosphates, and suspended
 solids to the storm water conveyance system. Include in the project plans an area
 for the washing/steam cleaning of equipment and accessories. This area must be:
 - a) Self-contained, equipped with a grease trap, and properly connected to a sanitary sewer.
 - b) If the wash area is to be located outdoors, it must be covered, paved, have secondary containment, and be connected to the sanitary sewer or other appropriately permitted disposal facility.

c. Retail Gasoline Outlets

- 1) Properly Design Fueling Area
 Fueling areas have the potential to contribute oil and grease, solvents, car battery
 acid, coolant and gasoline to the storm water conveyance system. The project
 plans must include the following BMPs:
 - a) The fuel dispensing area must be covered with an overhanging roof structure or canopy. The canopy's minimum dimensions must be equal to or greater than the area within the grade break. The canopy must not drain onto the fuel dispensing area, and the canopy downspouts must be routed to prevent drainage across the fueling area.

- b) The fuel dispensing area must be paved with Portland cement concrete (or equivalent smooth impervious surface), and the use of asphalt concrete shall be prohibited.
- c) The fuel dispensing area must have a 2% to 4% slope to prevent ponding, and must be separated from the rest of the site by a grade break that prevents runon of storm water to the extent practicable.
- d) At a minimum, the concrete fuel dispensing area must extend 6.5 feet (2.0 meters) from the corner of each fuel dispenser, or the length at which the hose and nozzle assembly may be operated plus 1 foot (0.3 meter), whichever is less.

d. Automotive Repair Shops

1) Properly Design Fueling Area

Fueling areas have the potential to contribute oil and grease, solvents, car battery acid, coolant and gasoline to the storm water conveyance system. Therefore, design plans, which include fueling areas, must contain the following BMPs:

- a. The fuel dispensing area must be covered with an overhanging roof structure or canopy. The canopy's minimum dimensions must be equal to or greater than the area within the grade break. The canopy must not drain onto the fuel dispensing area, and the canopy downspouts must be routed to prevent drainage across the fueling area.
- b. The fuel dispensing area must be paved with Portland cement concrete (or equivalent smooth impervious surface), and the use of asphalt concrete shall be prohibited.
- c. The fuel dispensing area must have a 2% to 4% slope to prevent ponding, and must be separated from the rest of the site by a grade break that prevents runon of storm water to the extent practicable.
- d. At a minimum, the concrete fuel dispensing area must extend 6.5 feet (2.0 meters) from the corner of each fuel dispenser, or the length at which the hose and nozzle assembly may be operated plus 1 foot (0.3 meter), whichever is less.

2) Properly Design Repair/Maintenance Bays

Oil and grease, solvents, car battery acid, coolant and gasoline from the repair/maintenance bays can negatively impact storm water if allowed to come into contact with storm water runoff. Therefore, design plans for repair bays must include the following:

- a) Repair/maintenance bays must be indoors or designed in such a way that doesn't allow storm water run-on or contact with storm water runoff.
- b) Design a repair/maintenance bay drainage system to capture all wash-water, leaks and spills. Connect drains to a sump for collection and disposal. Direct connection of the repair/maintenance bays to the storm drain system is

prohibited. If required by local jurisdiction, obtain an Industrial Waste Discharge Permit.

3) Properly Design Vehicle/Equipment Wash Areas The activity of vehicle/equipment washing/steam cleaning has the potential to contribute metals, oil and grease, solvents, phosphates, and suspended solids to the storm water conveyance system. Include in the project plans an area for washing/steam cleaning of vehicles and equipment. This area must be:

- a) Self-contained and/or covered, equipped with a clarifier, or other pretreatment facility, and properly connected to a sanitary sewer or other appropriately permitted disposal facility.
- 4) Properly Design Loading/Unloading Dock Areas
 Loading/unloading dock areas have the potential for material spills to be quickly
 transported to the storm water conveyance system. To minimize this potential, the
 following design criteria are required:
 - a) Cover loading dock areas or design drainage to minimize run-on and runoff of storm water.
 - b) Direct connections to storm drains from depressed loading docks (truck wells) are prohibited.

e. Parking Lots

1) Properly Design Parking Area

Parking lots contain pollutants such as heavy metals, oil and grease, and polycyclic aromatic hydrocarbons that are deposited on parking lot surfaces by motor-vehicles. These pollutants are directly transported to surface waters. To minimize the offsite transport of pollutants, the following design criteria are required:

- a) Reduce impervious land coverage of parking areas.
- b) Infiltrate or treat runoff.
- 2) Properly Design To Limit Oil Contamination and Perform Maintenance Parking lots may accumulate oil, grease, and water insoluble hydrocarbons from vehicle drippings and engine system leaks:
 - a) Treat to remove oil and petroleum hydrocarbons at parking lots that are heavily used (e.g. fast food outlets, lots with 25 or more parking spaces, sports event parking lots, shopping malls, grocery stores, discount warehouse stores).
 - b) Ensure adequate operation and maintenance of treatment systems particularly sludge and oil removal, and system fouling and plugging prevention control.

4. Waiver

A Permittee may, through adoption of an ordinance, code, or other regulatory mechanism incorporating the treatment requirements of the Design Standards, provide for a waiver from the requirement if impracticability for a specific property can be established. A waiver of impracticability shall be granted only when all other Structural or Treatment Control BMPs have been considered and rejected as infeasible. Recognized situations of impracticability include, (i) extreme limitations of space for treatment on a redevelopment project, (ii) unfavorable or unstable soil conditions at a site to attempt infiltration, and (iii) risk of ground water contamination because a known unconfined aquifer lies beneath the land surface or an existing or potential underground source of drinking water is less than 10 feet from the soil surface. Any other justification for impracticability must be separately petitioned by the Permittee and submitted to the appropriate RWOCB for consideration. The RWOCB may consider approval of the waiver justification or may delegate the authority to approve a class of waiver justifications to the RWOCB EO. The supplementary waiver justification becomes recognized and effective only after approval by the RWQCB or the RWQCB EO. A waiver granted by a Permittee to any development or redevelopment project may be revoked by the RWQCB EO for cause and with proper notice upon petition.

5. Limitation on Use of Infiltration BMPs

Three factors significantly influence the potential for storm water to contaminate ground water. They are (i) pollutant mobility, (ii) pollutant abundance in storm water, (iii) and soluble fraction of pollutant. The risk of contamination of groundwater may be reduced by pretreatment of storm water. A discussion of limitations and guidance for infiltration practices is contained in, *Potential Groundwater Contamination from Intentional and Non-Intentional Stormwater Infiltration, Report No. EPA/600/R-94/051, USEPA (1994).*

In addition, the distance of the groundwater table from the infiltration BMP may also be a factor determining the risk of contamination. A water table distance separation of ten feet depth in California presumptively poses negligible risk for storm water not associated with industrial activity or high vehicular traffic.

Site specific conditions must be evaluated when determining the most appropriate BMP. Additionally, monitoring and maintenance must be provided to ensure groundwater is protected and the infiltration BMP is not rendered ineffective by overload. This is especially important for infiltration BMPs for areas of industrial activity or areas subject to high vehicular traffic [25,000 or greater average daily traffic (ADT) on main roadway or 15,000 or more ADT on any intersecting roadway]. In some cases pretreatment may be necessary.

6. Alternative Certification for Storm Water Treatment Mitigation

In lieu of conducting detailed BMP review to verify Structural or Treatment Control BMP adequacy, a Permittee may elect to accept a signed certification from a Civil Engineer or a Licensed Architect registered in the State of California, that the plan meets

Attachment 4 To WQO 2003-0005-DWQ

the criteria established herein. The Permittee is encouraged to verify that certifying person(s) have been trained on BMP design for water quality, not more than two years prior to the signature date. Training conducted by an organization with storm water BMP design expertise (e.g., a University, American Society of Civil Engineers, American Society of Landscape Architects, American Public Works Association, or the California Water Environment Association) may be considered qualifying.